
 

 

TempSense 
 
 

A Project Report 
Presented to  

The Faculty of the Computer Engineering Department 
 

San Jose State University 
In Partial Fulfillment 

Of the Requirements for the Degree 
Bachelor of Science in Computer Engineering 

 
 
 

By 
Jiaqi Feng 

Joao Carlos Frota Matos Prado 
Jonathan Go-Oco 

Vinayan Kathiresan 
07/2021 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © 2021 
Jiaqi Feng 

Joao Carlos Frota Matos Prado 
Jonathan Go-Oco 

Vinayan Kathiresan 
ALL RIGHTS RESERVED  



 

 

APPROVED FOR THE COLLEGE OF ENGINEERING 
 
 
 

 
____________________________________________________ 

Kaikai Liu, Project Advisor 
 
 
 

____________________________________________________ 
Professor Rod Fatoohi, Instructor 

 
 
 

____________________________________________________ 
Dr. Xiao Su, Computer Engineering Department Chair  



 

 

ABSTRACT 

  

TempSense 

  

By Feng, Jiaqi; Frota Matos Prado, Joao Carlos; Go-Oco, Jonathan; Kathiresan, Vinayan 

   

In 2020, the entire world faced the biggest pandemic in the last 100 years, caused by the Sars-
Covid-19 virus. The disease, commonly known as Coronavirus or Covid-19, causes respiratory 
problems to the victim, and although the mortality rate of this disease is low,, the contamination 
rate is very high. The spreading rate of the Sars-Covid-19 virus was so high, that in less than 
three months the entire world was having to face the virus which started in Wuhan, China. 

The high spread rate of Covid-19 is due to the fact that during the first week of infection there 
are almost no symptoms. Furthermore, there is the concern of failure of the health system due to 
the large scale of people being infected such a situation that has happened in Italy, which the 
government of Italy to start a country-wide lockdown, prohibiting the citizens to leave their 
houses unless for strictly necessary needs, such as buying food and going to the hospital. 
Furthermore, as the virus expanded and quickly became the biggest pandemic we have ever seen, 
more countries faced similar situations to the one seen in Italy and country-wide lockdown 
became the quickest and most efficient way to mitigate the spread of the virus. With countries 
like the United States and Brazil reaching over 500,000 deaths by Covid-19 in 12 months.  

To help the world recover and come back to normalcy, our project has been focused on finding a 
fast and easy way to measure if people are potentially affected by the Covid-19 virus, and can be 
expanded onto tracking the health of any user to check for symptoms of other possible ailments 
and diseases. Among the most common symptoms are fever and difficulty breathing or shortness 
of breath, which causes the blood oxygen rate to be lower than normal. Therefore, our group has 
developed an affordable device that has the ability to check temperature and blood saturation 
levels as well as notify if any anomaly has been detected.  



 

 

Acknowledgments 

We would like to express our gratitude to our professor Rod Fatoohi and our advisor Kaikai Liu, 
who showed great patience and affection to the students involved with this project. Especially 
through the struggles we faced with our lack of experience and difficulties caused due to the 
worldwide distance between us all, and thanks to their help this project was made possible. 
 

  



 

 

Table of Contents  

Chapter 1. Introduction 
1.1 Project Goals and Objectives 
1.2 Problem and Motivation 
1.3 Project Application and Impact      
1.4 Project Results and Deliverables        
1.5 Project Report Structure 
 
Chapter 2. Background and Related Work 
2.1 Background and Used Technologies 
2.2 Literature Survey 
2.3 State-of-the-art Summary 
 
Chapter 3. Project Requirements 
3.1 Domain and Business Requirements  
3.2 System (or Component) Functional Requirements 
3.3 Non-functional Requirements 
3.4 Context and Interface Requirements 
3.5 Technology and Resource Requirements 
 
Chapter 4. System Design 
4.1 Architecture Design 
4.2 Interface and Component Design 
4.3 Structure and Logic Design 
4.4 Design Constraints, Problems, Trade-offs, and Solutions 
 
Chapter 5. System Implementation  
5.1 Implementation Overview 
5.2 Implementation of Developed Solutions 
5.3 Implementation Problems, Challenges, and Lessons Learned 
 
Chapter 6. Tools and Standards  
6.1 Tools Used  
6.2 Standards  

 
Chapter 7. Testing and Experiment  

7.1 Testing and Experiment Scope  
7.2 Testing and Experiment Approach 
7.3 Testing and Experiment Results and Analysis 

Chapter 8. Conclusion and Future Work 

 

 



 

 

References 

K. H. Khalid H. Almitani, “https://marz.kau.edu.sa/Files/320/Researches/70650_43625.pdf,” 
journal of King Abdulaziz University Engineering Sciences, vol. 28, no. 1, pp. 67–90, 
2017. 

S. Rost and H. Balakrishnan, "Memento: A Health Monitoring System for Wireless Sensor 
Networks," 2006 3rd Annual IEEE Communications Society on Sensor and Ad Hoc 
Communications and Networks, 2006, pp. 575-584, doi: 10.1109/SAHCN.2006.288514. 

Shahriyar R., Bari M.F., Kundu G., Ahamed S.I., Akbar M.M. (2010) Intelligent Mobile Health 
Monitoring System (IMHMS). In: Kostkova P. (eds) Electronic Healthcare. eHealth 
2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and 
Telecommunications Engineering, vol 27. Springer, Berlin, Heidelberg. 
https://doi.org/10.1007/978-3-642-11745-9_2 

Valsalan, P., Baomar, T. A. B., & Baabood, A. H. O. (2020). IOT BASED HEALTH 
MONITORING SYSTEM. Journal of Critical Reviews, 7(04). 
https://doi.org/10.31838/jcr.07.04.137 

Zheng YL, Ding XR, Poon CC, Lo BP, Zhang H, Zhou XL, Yang GZ, Zhao N, Zhang YT. 
Unobtrusive sensing and wearable devices for health informatics. IEEE Trans Biomed 
Eng. 2014 May;61(5):1538-54. doi: 10.1109/TBME.2014.2309951. PMID: 24759283; 
PMCID: PMC7176476. 

 

 

Appendix  
  



 

 

List of Figures 

 

Figure 1. UML Activity Diagram Page No. 14 

Figure 2. Overview of mobile application structure Page No. 15 

Figure 3. Overview of the TempSense structure. Page No. 17 

Figure 4. Diagram of components Page No. 18 

Figure 5.  TempSense Mobile Application Page No. 23 

Figure 6. Heart Rate and Oxygen Sensor EC-0567 Page No. 25 

Figure 7. Adafruit TMP117 ±0.1°C High Accuracy I2C Temperature Sensor Page No. 26 

 
  



 

 

List of Tables 

 

Table 1. tempsensetest.ino snippet showing formula of converting Celsius 
readings to Fahrenheit  

Page No. 21 

Table 2. TempSenseHTTPPost.py snippet, showing how data is sent over 
HTTP Post 

Page No. 22 

Table 3. index.js file snippet of Cloud Function modifying temperature data 
and storing it. 

Page No. 22  

Table 4. Testing results of temperature sensor Page No. 29 

Table 5. Testing results of heart rate sensor Page No. 33 

Table 6. Testing results of oximeter sensor Page No. 33 

 
  



 

 

Chapter 1. Introduction 

1.1  Project Goals and Objectives 

The goal of this project is to help increase awareness of health issues that can be derived from 
diseases such as Covid-19. We aim to do that by first providing a method for users to easily 
measure information about their bodies, such as temperature and blood saturation. And second, 
to provide the data measured in a way where the user can easily understand what it means. For 
example, it is known that Covid-19 can reduce blood saturation, but unfortunately blood 
saturation is not usually measured, therefore people affected by a respiratory disease are unaware 
of the low oxygen rate in their blood until other symptoms, such as fever, start showing up. 
Therefore, the purpose of  this device will be to help users keep track of their health and log any 
possible changes that may indicate illness or symptoms of various medical conditions.    

1.2 Problem and Motivation 

Nowadays, people forget to check their own health regularly. Usually because they are so 
focused on their own problems, such as work and school, that there is no time left for 
themselves. Furthermore, in 2019, a new disease called the Covid-19, which started in China, 
quickly spread through the world and became the biggest pandemic of the last 100 years. 
Because the Covid-19 is a respiratory disease that affects the lungs, there are a few measures that 
can be easily tested in order to help notice any symptoms. For example, the aforementioned 
tracking of blood saturation, which is not normally done and could help a potential patient of 
Covid-19 to realise there is something wrong even before more prominent symptoms show up, 
such as loss of smell and taste. 

Knowing this we proposed this project, which aims to help people track their health conditions in 
a more accessible and easier way. As people use our device and mobile app, they will 
consciously try to improve their health, and this will help motivate our users to make healthier 
choices, and go seek medical attention when signs that they can physically take note of are 
occuring. 

1.3 Project Application and Impact 

This project is meant to be applied to the general population. Anyone with access to a 
smartphone and internet will be able to use it and benefit from it. The idea for this project is to 
help any individual that wants to improve their overall wellbeing. Our aim is to create a positive 
impact in people’s life by making them more aware of their health and to help create awareness 
of symptoms caused by respiratory diseases.  

Since the method for data analysis will be simple and easy, we believe that there will be a 
constant and large stream of data. With this amount of data we will be able to provide a larger 
insight regarding a patient’s health status, and reduce the time it takes for users to realise they 
have been contaminated. This will cause a positive impact in the life of our users, because these 
people will be able to quarantine quicker and alert the people they got in contact with about the 
situation. By doing so we will be reducing the chance of Covid-19 spreading and any future 
diseases that share similar symptoms. 

 



 

 

1.4 Project Results and Deliverables 

With the conclusion of this project, we made a device that is able to be placed anywhere with 
internet connectivity that can communicate with a cloud database to store the information 
measured. Furthermore, the user also has access to all measurements through their mobile app. 
Allowing for an easy way for users to measure some critical information about their health that 
might be a concern for respiratory diseases.   

Furthermore, there is a finished prototype showing how the device is expected to run, as well as 
how it connects with a smartphone through a mobile app. Furthermore, there is this project report 
which is a collection of the research made by the team members that help make it a reality, with 
detailed information about the components we chose on the hardware side, the reasoning behind 
our choices, and how they work. On the software side there is the explanation of how we were 
able to develop a cross platform mobile app and what dependencies were used 

 

1.5   Project Report Structure 

This report will have 6 sections that will discuss the technical approach of developing the mobile 
app and the measuring device, as well as how the connection between them was established 
through a cloud database.  

Chapter 2 will discuss the background research that was made prior to starting the project as well 
as courses and studies made that provided knowledge that can be applied. And lastly, a state-of-
the-art summary that related to all the literature researched to aid us with this project. 

Chapter 3 is about the requirements that we set for this project. We will describe the 
requirements for the system, interface, and software functionalities, as well as non-functional 
requirements. This chapter will describe how our project should work in a suitable environment. 

Chapter 4 is a description of our system design. It will contain information about the 
architecture, product design, modules, interfaces, and data for our project to achieve the 
requirements mentioned in chapter 3. 

Chapter 5 will detail the implementation of our system, including both software and hardware. 
Describing which dependency was used, as well as why we chose to use it and how they apply to 
the project. Lastly, we will show how these dependencies helped us solve problems as well as 
what challenges we overcame. 

Chapter 6 will list the tools used in both the hardware and software side of our project. Describe 
how these tools were used and with what purpose, as well as standards used in this project. 

Chapter 7 is the testing results we gathered throughout the experiments made during the 
development of both the measuring device and the mobile application. With a description of how 
we approach these tests and the analysis of the results we got. 

Lastly, the 8th chapter will be our concluding statements and expectations for our future works. 



 

 

Chapter 2. Background and Related Work 
2.1 Background and Used Technologies 

Because the entirety of this project has been conducted during the pandemic caused by the 
Covid-19, the people involved in it are separated around the world. Due to that, we decided to 
make this project entirely asynchronous. It is nearly impossible to keep everybody working in a 
synchronous way while in three different time zones, as the members of this team are spread 
between California, Brazil and India, especially including the many travel bans that happened in 
2020, which impossibilitate the team to meet up in person.  
We estimate that while unable to meet in person and work at the same time we would be able to 
deliver the project in a timely manner, as well as complete the entirety of our aforementioned 
goals. Unfortunately, it will limit the amount of people that will have access to the hardware 
portion of the project, and might cause some delay in response when communicating with our 
peers. 

The technologies used in this project are Flutter, RaspberryPi, and Firebase. Flutter is used to 
help develop the mobile app. Flutter is an open-source tool that allows for cross-platform 
development, which will allow us to make the app for both Android and iOS platforms at the 
same time. On the hardware side we used Raspberry Pi to create a sensor that can measure the 
oxygen saturation and temperature of the user. There are plenty of sensors that were designed to 
be used with Raspberry Pi and will be later discussed in chapter 6. Finally, to connect the 
Raspberry Pi to the mobile app we will be using Firebased, which is a platform created by 
Google that helps with mobile and web applications. For this project it will be used as a live 
database that will be updated by the Raspberry Pi when measured and allow for the mobile app 
to retrieve the data in a timely manner.  

Lastly, we will be using the knowledge we acquired during our college career in IoT, Embedded 
Systems, OOP, and Data Structures to help implement both the software side as well as the 
hardware. Furthermore, we had to learn how to handle technologies we have not worked with 
yet, such as how RaspberryPi works and how it handles the connection with its peripherals, and 
how to properly send the information to Firebase, as well as how to make flutter connect to the 
same database and present the information in a friendly way for the user. 

2.2 Literature Search 

Recently, with the advancement of technology, health monitoring systems have become more 
common among society. They are a great way to guarantee that people who have frail health stay 
aware of their conditions. Moreover, due to the Covid-19 pandemic people are more interested in 
the topic of health than ever before. Usually, when this topic comes up the first thought is what's 
more common to us such as Apple Watch’s heart rate sensor, or “stand-up” alarms. But there are 
more robust systems that can provide health monitoring that is more relatable to professional 
medical use. One of these examples is called Memento.  

Memento was developed by S. Rost and H. Balakrishnan (2006), and it is a health monitoring 
network that is able to provide symptoms alert while maintaining a robust network that is fail-
proof against packet loss, while still maintaining a lightweight bandwidth. Another great 
example is  IMHMS (Shahriyar R., Bari et al, 2010), which stands for Intelligent Mobile Health 



 

 

Monitoring System. A health monitoring system that was made due to the realisation of how well 
integrated mobile computers have become to our daily lives, and how powerful and small it was 
possible to make sensors that would measure information about the user. Furthermore, IMHMS 
allows for communication between doctors and patients. Furthermore, Valsalan et al. (2020), 
proposed an IOT Based Health Monitoring System that goes even further than just recording the 
patient's basic health status, but it also records room temperature and humidity, and shares it with 
a doctor, allowing for simple distant diagnosis. Lastly, Zheng et al. (2014) proposes an 
integration between wearable sensors to the environment. Such as simple things like a door 
handle with temperature sensors that can indicate if the user has a fever or not, or more complex 
solutions such as tattoos that have sensors and can keep monitoring 24/7 for a long term.  

In conclusion, these articles helped us greatly to understand the technological advance of IoT in 
healthcare, and all the vast possibilities we have in the future, to achieve a position where a 
doctor's appointment will be just a message. Furthermore, these articles aided us to choose the 
best course of actions we should take when approaching the problem we are trying to solve with 
this project. Especially since like Valsalan et al. (2020), our inspiration for this project came with 
the Covid-19 pandemic and the desire to improve people’s lives. 

2.3  State-of-the-art 

There are many innovative techniques being used to improve our everyday lives. Many of these 
rely on manipulating data that is gathering through sensors. For health care there are many 
aspects of our body that are important to measure especially during this pandemic, such as 
oxygen saturation, heart rate, and temperature.  

There are development sensors that will measure the level of oxygen presented in the patient's 
breath, or infrared cameras that can follow the subjects movement and measure their 
temperature.Furthermore, there are sensors that could be installed in the bedsheets to monitor the 
user heart rate during sleep, or handles with sensors installed that can measure not only 
temperature but also heart rate through the palm of their hands. As well as sensors that are 
installed in the toilet seat that allow for weight measurement, and urine and feces weight. 

But all of these data collection sensors are useless without the correct analysis. To solve this 
problem we have developed artificial intelligence that can cover the procedures of data analysis 
with big data. These AIs can receive all of the data from the sensors and manipulate it, through a 
process of selecting the relevant chunk of data, update it with newer measurements, and 
comparing with the old ones, it is possible to generate AI based reports on the patients health as 
well as alert for any critical conditions that are detected, as well as provide recommendations to 
what can be done to improve the patient’s health. 

According to Business Insider, the Internet of Medical Things(IoMT) is going to be valued as a 
$158 billion industry in 2022. 

One of the primary uses is the ability to run data analytics on the vitals in the cloud to be 
proactive and predict health problems. This was previously done by doctors looking at charts and 
patient history, which is arguably not as reliable as a computer crunching numbers and making 
calculated predictions instead of doctors making educated guesses based on their experience, 
which also varies from doctor to doctor. 



 

 

The well known IoMT devices are wearables like the Fitbit, Apple Watch, Samsung Galaxy 
watch, etc. We are not trying to compete with these devices as we are building a clinical grade 
device and not a wearable that uses estimates to track your health and fitness. 

Currently, clinical grade IoMT is primarily used in larger devices such as smart medical beds, 
electrocardiograms and ultrasound machines. These machines make health information available 
to doctors and nurses wherever they are over the internet. They upload the vitals they have to the 
cloud, just like our device will. 

A few IoMT startups such as Clover Health and Sensely attempt to provide or reduce the cost of 
health insurance using IoT, or is attempting to provide over the air access to doctors such as 
Babylon Health and Genoox 

Others are trying to predict health based on DNA sequences such as Helix, Karius  

There are a few startups that have similar goals to us: 

● Neurotech which is developing a clinical grade IoMT ECG 
● Pear Therapeutics which discovers, develops, and delivers clinically validated software to 

provide better outcomes for patients, smarter engagement and tracking tools for 
clinicians. 

● AliveCor which is a medical device and artificial intelligence company that sells ECG 
hardware and software for consumer mobile devices  



 

 

Chapter 3. Project Requirements 
 3.1  Domain and Business Requirements 

Health issues have been significant since the beginning of Covid-19 pandemic. People have been 
realizing that we need more attention to small details about our body. We need to be alert when 
there’s something that seems unusual as soon as possible, even though things are just a little bit 
off, we should proceed to investigate. There are options out there for monitoring health 
conditions, Fitbit and Apple Watch, but they are not cheap and easily affordable. Therefore we 
proposed to have this project, TempSense, so that people can be easily alerted about their health 
conditions. This device should be cost-efficient and easy to use. 

Figure 1. UML Activity Diagram 



 

 

 

 



 

 

 

Figure 2. Overview of mobile application structure 



 

 

3.2  System functional requirements 

a. Devices should be able to constantly detect their body temperature using the sensors. 
b. Users should be able to see their body temperature history from their mobile phone. 
c. Users should be able to see their recent body history from their mobile phone. 
d. Users should be able to change their personal information, in this case, their usernames. 

3.3  Non-functional requirements 

a. Devices should be reliable. 
b. Device should be easy to set up. 
c. Device should be running fine for a long time without human intervention. 
d. App should be easy to understand and intuitive. 

3.4  Context and interface requirements 

a. App should have clear distinction between types of data. 
b. App should have a list view to show the temperature history. 
c. App should have a dialog to inform users in case of unusual temperature. 
d. Device to measure data must be easy to use 

3.5  Technology and resource requirements 

a. Sensors must measure reliable information 
b. Database must be able to store all information measured 
c. Database must be accessible by Raspberry Pi and Mobile App 
d. Measuring device and mobile app must not require a lot of power to use 

  



 

 

Chapter 4. System Design 

4.1 Architecture Design 

 

Figure 3. Overview of the TempSense structure. 

Figure 3, is a visualization of the system structure. We have a Raspberry Pi as the hosting 
platform for the sensors, and those sensors will be collecting relevant data constantly and 
sending them raw to the cloud database, which is hosted using Google Firebase. The data doesn’t 
immediately get stored to the collection, instead, it will first be passed to the cloud function 
hosted on Firebase to be prepared. The cloud function will filter and add relevant data such as 
timestamp to the raw data and convert it into json format and store it in the corresponding 
collection. Once the data is in the collection, the data will be streamed to the mobile client 
application. 

In reverse, the mobile application will be able to change configurations of the device or other 
sorts of information. Such configurations are also stored in the Firebase. However, since it is a 
simple data structure, we don’t need cloud functions to filter and prepare the data. 

 

4.2 Interface and Component Design 



 

 

4.2.1 User Interface 

The mobile client application has an UI constructed using widgets provided by Flutter rendering 
framework. The client contains one screen that presents all the relevant data and information. 
There are several components in the main screen. On the very top, there is a simple app bar that 
displays very basic user information, namely, the username. Users can tap on it and make 
changes to it.  

Below the username are a row of widgets. To the left is the recent temperature reading, it uses a 
bigger font because it has priority over other things. There will also be a date and time field 
indicating when the reading was recorded. To the right is the recent heart beat reading. Same as 
the temperature reading, it has a bigger font and a date and time field. 

Next we have a line chart for the temperature where users can see the change of their body 
temperature during a period of time. Finally, we will have a listview for a more detailed 
temperature history presentation. All the temperature readings will be presented in this cell using 
the most intuitive way. 

4.2.2 Components 

 

Figure 4. Diagram of components 

The project is divided mainly in three pieces, the mobile app, the sensors, and the cloud database. 
Figure 4 is an illustration of where our project components will be connected, and is divided in 
the three pieces mentioned before. First, the mobile app will be designed using Dart and Flutter, 
because it provides a quicker way to develop both iOS and Android apps. Furthermore, the app 
also has a clean and nice UI where the user can analyse their own measurements, under the hood 



 

 

there are modules that allow for user customization of their own relevant information, and that 
can communicate with the Firebase DB to receive the data measured by the sensors and send any 
modification that the user desires to their information. 

Secondly, there is a Raspberry Pi coded in C++ and Python and connected to the many sensors 
that capture the user's health information. The Raspberry Pi connected to the sensors via a wire, 
inside the Raspberry Pi there are functions that allows for pre-analysis of the data to ensure that 
any outliers are excluded. For example, it would be impossible for a living human being to 
register a temperature of 33°C / 91.4°F, so in case of any such measures the Raspberry Pi will 
discard that information. After the Pre-analysis, the data measured through the sensors is sent to 
Firebase. 

Finally, the Firebase provided with Google Cloud Computing analyses the data and embellishes 
it, so it is neatly stored in our database that will be accessed by the smartphone app, this data 
processing step is done using Javascript and Express.js. Furthermore, the Firebase also lets us 
store relevant user information that can be accessed and modified by the user itself.  

4.3 Structure and Logic Design 

[Present the detailed structure and logic design for your hardware/software components and 
processes. This section must include textual description accompanied with diagrams. If scientific 
or mathematical fundamentals are used for your project algorithm, specify what kind of formula 
or theory has been applied.] 
For the temperature sensor, it is connected to an Arduino via 4 wires, a SDA, SCL, Power, and 
Ground. Ppon reading the datasheet and the example code given, we modified the code to send 
readings in Fahrenheit rather than the default Celsius temperatures the sensor gives. To do this, 
we used the formula (Reading in Celsius * 1.8) + 32 = Temperature reading in Fahrenheit. From 
the reading, we connect the Arduino to a USB port of the Raspberry Pi, which reads the serial 
output from the Arduino, and sends it over to Firebase using a HTTP Post Request.  
 
We used a mathematical algorithm to calculate both the oxygen saturation and the heart rate 
from digital values(1s and 0s). For heart rate, we keep track of the increasing values to find the 
peak of the sine wave, and then of the decreasing values to fund the trough, Then using this we 
counted the number of heart beats in a given period of time and multiplied it to get the BPM. For 
the oxygen saturation, we used the previously found peak and trough values to find the ratio of 
the height of the wave to the value of the trough. This ratio is our slope(m) for a y=mx+c 
equation. x is -25 and c is 117. We started with 100 as our c value and then modified it to get 
values that were acceptable. 
 
 
4.4 Design Constraints, Problems, Trade-offs, and Solutions 

One of our constraints is an unreliable sensor that didn’t give consistent values. To combat this I 
am working on a software filter to make the reading more reliable. The sensor is light based, so I 
am also working on making a light proof enclosure that will also serve to immobilize the hand to 
get more accurate readings. 
 



 

 

4.4.1 Design Constraints and Challenges 

One of the main challenges we faced was the extent of our economic resources, because it 
affected our choice of peripherals to purchase, but more importantly which database to use. 
Currently the budget for this project had been about $50, which we had planned based on the 
price of peripherals. Because reliable sensors are more expensive, we had to choose cheaper 
versions which affect the reliability of the reading. Also, we had to factor in the price of the 
cloud storage we are using, which is Firebase, and we were caught surprised with the price it is 
required to maintain such a platform on Google Cloud and Firebase, which led us to realize that 
it's not only an economic price but also a scalability problem. 

Furthermore, we face the question of privacy and information security, which is currently a very 
socially sensitive topic in the USA but also more cost that is added to maintain our project. 
Because we need to ensure that the data can be accessed by the user and the user only, and 
ensure that the data will not be sold to third parties for any reasons or profits. We also need to 
protect the user data from potential threats such towards our database. If there were no financial 
concerns we could learn from many messaging apps such as Telegram, WhatsApp, or Signal, 
which are a chat application that uses end-to-end encryption on their platform to protect their 
user-generated data from threats. Implementing end-to-end encryption would be very useful for 
our situation, as it is famous for protecting data from man-in-the-middle attacks, which is when 
the attacker pretends to be the legitimate user and receives the data it’s not supposed to get 
access to. 

4.4.2 Design Solutions and Trade-offs 

Using Google Cloud and Firebase, although expensive, does have its advantages. For example, 
storing data on Google Cloud and Firebase might make the software development process easy 
but might not scale well if the user base grows unexpectedly in the future. Unfortunately, as 
mentioned our budget is not enough to cover the amount it would cost for the amount of reading 
and writing per day it would require for a app like this which continuously tracks the health data 
of the user, and we should probably in the future transition to other data storage platform like 
Amazon Web Services or even Microsoft Azure.  

For the user-generated content protection, we want to make sure that there are secure access rules 
implemented on the Firebase console so that only the admin and users can get access to the user-
generated data. We might also set up user privacy agreements to inform users of our privacy 
policy so that users can have peace in mind while using this app. 

.  



 

 

Chapter 5. System Implementation 

5.1 Implementation Overview 

For the hardware, we are using two sensors, a Heart Rate and Oxygen sensor EC-0567, and a 
Adafruit TMP117 ±0.1°C High Accuracy I2C Temperature Sensor, and recording that data 
through an Arduino and a Raspberry Pi and sending that data to the database using HTTP Post 
Requests. 

We have connected the Heart Rate sensor to the Raspberry Pi to receive the data and to convert it 
to readable values of BPM and SPO2 using mathematical algorithms. 

On the software side, we have developed a functional mobile app that allows the user to see the 
data measured. This app was built using Flutter, which was developed by Google and allows for 
cross platform development from a single codebase. Flutter is easy to install and it can be used 
with many different editors of our choice, which allowed us to keep using the editor we were 
more comfortable with. While Flutter is just the platform, the language used to develop the app 
was Dart, which was somewhat familiar to us since it has a similar syntax to C/C++, and reduced 
the learning curve to understand how it works. Unlike what would have happened in case we 
started using Kotlin, a language designed for Android, or Swift, designed for iOS. 

Next part of the software side is the Cloud Functions used on Firebase that allow us to edit the 
data coming in from the sensors and store them into the database. As our data is sent using HTTP 
it triggers the cloud function to run a JavaScript that will modify the incoming data and store it in 
the Firestore database in an organised way. Connected to that is the Firestore database, which is 
hosted on Google’s Firebase as well. Firestore is a NoSQL scalable database, that unlike SQL, is 
non-relational, it does not need to be stored in tables, and is scalable. Furthermore, we chose to 
be constant and use Google’s frameworks through the entire project to keep developing easier 
and avoid running through connectivity problems between different services. 

5.2 Implementation of Developed Solutions 
 
The temperature sensor measures the temperature in Celsius, and for American users as well as 
our team, which knows temperature in Fahrenheit, we then convert the readings to Fahrenheit 
before sending the data to Firebase. In the code, we did this by implementing the formula 
(𝐶𝑒𝑙𝑠𝑖𝑢𝑠 𝑅𝑒𝑎𝑑𝑖𝑛𝑔 ∗  1.8)  +  32 =  𝐹𝑎ℎ𝑟𝑒𝑛ℎ𝑒𝑖𝑡 𝑅𝑒𝑎𝑑𝑖𝑛𝑔, shown in Table 1 below.  
 

Table 1. tempsensetest.ino snippet showing formula of converting Celsius readings to 
Fahrenheit  

f = ((reading.temperature) * 1.8 ) + 32; 

 
 
For the temperature sensor, the data is gathered in an Arduino Mega 2560, which sends each 
reading over to the Raspberry Pi through Serial. Once the Raspberry Pi receives the data, we 
check to see if there is an internet connection. If one is established, we send the data over HTTP 



 

 

Post Request, as shown in Table 2. The Heart Rate and Oxygen Saturation sensor’s data readings 
are sent in the same way, but with different variables being sent and different URLs. 
 

Table 2. TempSenseHTTPPost.py snippet, showing how data is sent over HTTP Post 

if test_internet(): 
                    reading = {'temp' : line} 
                    r = requests.post(url, data = reading) 
                    print(r.text) 

 
After the data is sent to Firebase using HTTP post method, the cloud function will take the value 
and put it into the corresponding collection, and at the same time, the value will be paired with a 
timestamp indicating when the value was uploaded. Once the data is sent to Firebase, Cloud 
Functions do the heavier work as shown in Table 3, which shows how we managed to receive 
and modify the HTTP post request. 
 

Table 3. index.js file snippet of Cloud Function modifying temperature data and storing it. 

exports.addTemp = functions.https.onRequest(async (req, res) => { 
    // Grab the text parameter. 
    const original = req.body; 
    functions.logger.log("Hello from info. Here's an object:", original); 
    var map = req.body 

// Push the new message into Firestore using the Firebase Admin SDK, and         add date 
and time information to the table. 

    const writeResult = await admin.firestore().collection('temp').add({'temp': map['temp'], 
'timestamp': Date.now()}); 
    // Send back a message that we've successfully written the message 
    res.json({result: `Temp with ID: ${writeResult.id} added.`}); 
  }); 

 
 
The app then fetches the temperature values and presents them nicely using a chart and list view.  
We used a mathematical algorithm to calculate both the oxygen saturation and the heart rate 
from digital values(1s and 0s). For heart rate, we keep track of the increasing values to find the 
peak of the sine wave, and then of the decreasing values to fund the trough. Then using this we 
counted the number of heart beats in a given period of time and multiplied it to get the BPM. For 
the oxygen saturation, we used the previously found peak and trough values to find the ratio of 
the height of the wave to the value of the trough. This ratio is our slope(m) for a y=mx+c 
equation. x is -25 and c is 117. We started with 100 as our c value and then modified it to get 
values that were acceptable. 
 
The mobile application, developed using Flutter, followed a design pattern called BloC pattern 
which is quite popular in the Flutter community for its simplicity and great results, and is similar 
to the well known MVVM pattern. The difference here is that BloC combines view model and 



 

 

view controller into one BloC class. The app thus has three components: bloc, model, and 
repository. BloC is where we store the business logic, things like initializing the data or filtering 
data happens here in BloC. Repository is where we connect to Firebase API and fetch data 
collected using the Raspberry Pi. The current version of the TempSense mobile application is 
shown below in Figure 5. 
 

 
Figure 5. TempSense Mobile Application 

 

5.3 Implementation Problems, Challenges, and Lesson Learned 

The biggest problem of our set up is the inconsistent values we received from the sensor. This 
required a lot of trial and error debugging to filter out the values that were not correct.  

The algorithm to find the heart rate and oxygen saturation was also a challenge to perfect as the 
equation varies sensor by sensor, and the lower quality sensor that we used didn't give consistent 
results.  

We are working on an enclosure to house the sensor. It is light based so we think that if we keep 
it in a dark enclosure we will get more consistent results. The enclosure will also serve as a 
consistent way to immobilize the user's finger while the readings are taken.  

To combat a lot of these issues, we found that putting less pressure on the sensor yielded more 
accurate results, which had us conclude that the sensor was sensitive to the pressure on it. 



 

 

For the temperature sensor, we originally planned to use a thermal camera, but we found the data 
not accurate enough to measure the body temperature of a person, so we switched to a 
temperature sensor that requires one to touch to measure the temperature instead. 

For the software part, namely the mobile application, we have one team member who has 
experience in Flutter so there wasn’t any problems or challenges there, however, for the backend 
applications, none of us have enough experience therefore we went on and decided to use 
Firebase instead of setting up a database on AWS or Google Cloud Platform which saved us a lot 
of time and efforts. We also had trouble building the connection between the server and the 
hardware sensors. We ended up going with Firebase cloud function which provides us a way to 
enable sensors to send data using HTTP calls. 

  



 

 

Chapter 6. Tools and Standards 

6.1. Tools Used  

For the hardware side of this project, we are using two sensors, an Arduino, and a Raspberry Pi 
to send the recorded data to Google Firebase. The sensors used are the Heart Rate and Oxygen 
Sensor EC-0567, shown connected to the Raspberry Pi in Figure 6 and a Adafruit TMP117 
±0.1°C High Accuracy I2C Temperature Sensor, shown connected to the Arduino Mega 2560 in 
Figure 7.  

 
Figure 6. Heart Rate and Oxygen Sensor EC-0567 



 

 

 
Figure 7. Adafruit TMP117 ±0.1°C High Accuracy I2C Temperature Sensor 

With the Temperature sensor, we connected the device to an Arduino, as we found the Raspberry 
Pi implementation to be difficult due to the lack of experience and the easier implementation 
directions as shown by the manufacturer of the sensor. Once we get the data from the sensor, we 
send it over through an HTTP Post Request using code made in Arduino, which sends it over to 
our Google Firebase where our app team can use it. 

With the Pulse and Oxygen Saturation Sensor, we connected it directly to the Raspberry Pi 
through an Analog to Digital Converter. The data is filtered and sent to Google Firebase from the 
Pi using HTTP Post Request as well.  

For implementing the sensors, we communicated regularly with the app team to discuss the best 
course of action on how to send the data through Canvas and Discord, where we concluded on 
which sensors would be best, and which database would be best to send.   

For the software on the mobile, we are using Flutter which is a framework for developing cross 
platform mobile applications provided by Google to develop the mobile client application for 
presenting the data detected by the sensors. We are using Google Firebase for data streaming and 
storage, and Cloud function for receiving the data from the hardwares and storing them into the 
corresponding collections. For the functions hosted on Firebase for processing data, we are using 
Javascript and express.js framework because we don’t have any options. 



 

 

Packages used in Flutter:  

● fl_chart: We are using FL charts to create beautiful and intuitive visualizations of the 
temperature readings. 

● firebase_core: We are using firebase core as a dependency for the cloud firestore. 
● cloud_firestore: We are using cloud firestore package to access data stored in the 

Firebase.  
● flutter_bloc: We are using flutter bloc packages to help make implementing bloc patterns 

a breeze. 
● equatable: We are using equatable to make objects easily comparable. 
● intl: We are using intl for utility functions such as date formatter. 
● shared_preferences: We are using shared preferences to store user preferences on the 

device. 

6.2. Standards  
 
The standard we used for the Adafruit TMP117 ±0.1°C High Accuracy I2C Temperature Sensor 
was that we needed a sensor to measure body temperature accurately enough so that users would 
be able to log the temperature knowing that the temperature recorded was correct. For the Heart 
Rate and Oxygen sensor EC-0567, we wanted the sensor to accurately measure both the heart 
rate and Oxygen Saturation levels without major variance in values.  

Flutter allows us to easily create an application to display the data recorded in the sensors to our 
users. Flutter’s simplicity and open-source nature gives us the freedom to create an app to our 
customization standards, and make it easier for the user to understand that data they record from 
our sensors and from their own input.   



 

 

Chapter 7. Testing and Experiment  

7.1  Testing and Experiment Scope  

The scope of the tests conducted by the team are to ensure that reliable information can be 
measured and communicated between the user’s smartphone, measuring sensors, and Firebase. 
First thing we did was to test the sensors on the arduino, because our goal was to quickly ensure 
that the sensors would work and be reliable enough that outlier measurements could be solved on 
the software side.  

We bought a Pulse Oximeter from a Pharmacy to check the accuracy of the heart rate and 
oxygen saturation. We compared the values from the Pulse Oximeter, treating these as the 
expected values for both the heart rate and oxygen saturation, and compared them to the readings 
taken from our sensor. 

Next, we tested them on the Raspberry Pi and we also checked if there were any major changes 
between measurements done using arduino or Raspberry Pi. The Raspberry Pi was used to 
communicate with Firebase, and knowing that the sensors were working fine helped in 
debugging or catching any failed attempts where weird data could be sent. This will also test the 
reliability of using HTTP posts requests to send data from Raspberry Pi to Firebase. 

7.2  Testing and Experiment Approach 

First step was to test the sensors. Once we were able to ensure that they were working properly 
we started measuring the values they would gather during the day, which allowed us to calibrate 
them properly. For the temperature sensor, to test the accuracy of the measurements, we 
conducted a comparison of the expected value from a thermometer, and compared it to that of 
the sensor. We randomly tested the temperature against the thermometer to see if any variable 
change was significant enough to be an accurate tool to be used in measuring one’s body 
temperature.  

We compared the values we got for BPM and SPO2 to those from a Pulse Oximeter we bought 
from a Pharmacy. We got our values to be within the range of error by comparing these values 
and changing the mathematical equations used. We used a trial and error method to fix these 
equations. 

Then we tested the communication with Firebase by sending the data measured and checking the 
DB tables to see if there were any modifications to them when we sent a HTTP Post request. In 
the Python scripts, we used the line in Figure “”, which printed back a confirmation that data was 
sent to Firebase. At the same time, we tested the reliability of the mobile app to connect with our 
DB. Whenever new data was uploaded to Firebase, the app was opened to see if there was any 
update information. With this we were able to ensure that communication between the Raspberry 
Pi, Firebase and the mobile app was reliable. 

7.3 Testing and Experiment Results and Analysis 
 

In testing, we found that the Adafruit AMG8833 8x8 Thermal Camera Sensor, the original 
sensor we planned on using to capture body temperature, had difficulties in capturing the 
temperature of just the target, as it would gather each individual pixel and measure the average 



 

 

temperature rather than a single point. We also found that when the Thermal Camera was closer 
to the target, while the temperature reading would be more accurate, the temperature could range 
4 degrees higher or lower than the predicted temperature. For this reason, we switched to the 
Adafruit TMP117 ±0.1°C High Accuracy I2C Temperature Sensor, as we found it’s accuracy to 
the ±0.1°C fell in standard to what we wanted out of this project.   
 
To test the accuracy of the readings, we conducted 20 random readings comparing the value of a 
thermometer readings as our expected values, and the temperature sensor readings as our 
experimental values. The reported difference between the actual value and the recorded value for 
the temperature readings according to the temperature sensor’s manufacturer was ±0.15°C. To 
test this, we found the mean of the differences in the values from and calculated the p value. The 
measured comparison between measurements is shown in table 2 below: 
 

Table 2. Testing results of temperature sensor 

Expected Temperature 
Reading from Thermometer 
(°C) 

Recorded Temperature from 
Temperature Sensor (°C) 

Difference 

36.67 36.72 0.05 

37.17 37.09 0.08 

36.28 36.17 0.11 

36.94 36.95 0.01 

36.38 36.51 0.13 

36.83 36.90 0.07 

37.00 36.97 0.03 

36.52 36.40 0.12 

37.15 37.08 0.07 

37.02 37.04 0.02 

36.91 36.99 0.08 

36.48 36.44 0.04 

36.87 37.00 0.13 

36.55 36.61 0.06 

36.72 36.57 0.15 



 

 

36.69 36.70 0.01 

36.42 36.39 0.03 

37.11 37.11 0.00 

37.02 36.92 0.10 

36.87 36.78 0.09 

 
 
We found the mean of the difference between the expected temperature values and the recorded 
values to be 0.069 with a standard deviation of 0.045. In observing our values, we found the 
majority of our measured values to be within the 0.1°C range for error that the manufacturer. 
And while some values exceeded that range value, we believe this may be more to do with 
human error, with possible reasons being the readings not being taken at the exact moment of 
each other, with each being taken right after, as well as both the thermometer and the 
temperature sensor possibly being affected to the temperature outside of the body. To test the 
accuracy of the heart rate sensor and oxygen saturation we took 10 readings and compared them 
to a Pulse Oximeter we bought at a Pharmacy. The measured values are below in table 3 and 4 
respectively. 
  



 

 

 

Table 3. Testing results of heart rate sensor 

Expected Heart Rate(BPM) Read Heart Rate(BPM) Difference(BPM) 

67 77 3 

67 77 3 

68 70 2 

70 70 0 

72 71 1 

75 82 7 

73 75 2 

65 68 3 

66 67 1 

 
 

Table 4. Testing result of oximeter sensor 

Expected Oxygen 
Saturation(SPO2) 

Read Oxygen 
Saturation(SPO2) 

Difference(SPO2) 

97 96 1 

98 97 1 

98 95 3 

98 96 2 

98 97 1 

98 90 8 

98 97 1 

97 97 0 

98 97 1 

 



 

 

Apart from one off value in both measurements, our readings were fairly consistent and within 
the margin of error. For the heart rate sensor, we calculated the mean difference to be 3.7, and 
the standard deviation was 4.6. Meanwhile, the mean difference when measuring the oximeter 
was 1.9 and the standard deviation was 1.1. We assume that the larger difference is caused by the 
fact that these are cheaper sensors than the one used to measure body temperature. Although the 
measurements are larger, they are still within an acceptable range.   



 

 

Chapter 8. Conclusion and Future Work 

When planning ahead, we intend to use a better heart rate sensor to avoid bigger disparities 
between expected and measured values, as well as to increase the reliability of our project. Also, 
we will be using a digital sensor that processes data on it’s own chip and has a more reliable 
connection such as I2C, unlike the one we have now that works with analog signals.  

Furthermore, we plan that in the future our device could run data analytics based on the data 
measured and provide a more reliable monitoring of the user’s health over periods of time to 
alert of any large deviation value that could potentially be a health issue or a serious threat to the 
user’s health. Furthermore, it would be a great addition to implement machine learning to do this 
task, as it would be able to adapt to the user’s habit.  

We plan to have the temperature sensor fully integrated into the Raspberry Pi, rather than 
connected to an Arduino that sends the data over serial. Along with that, since during this project 
we were only able to do one sensor each, the next goal would be to connect the sensors such that 
there is only 1 Raspberry Pi needed for the final product. 

While we were able to send the data over HTTP, we may switch over to the MQTT protocol, as 
MQTT may offer different advantages that HTTP may not have. Also, regarding the internet, 
while we have found a way to check if there is an internet connection before sending the data 
over, we have not yet implemented a way to save the data remotely when there is no internet, and 
then sync the data to Firebase once a connection is reestablished. 

Moreover on the software side, we understand our app’s limitations in the matter of UI 
customization and security, so we would increase the changes to the interface in order to make so 
the user has more control to what he would like to see in the main screen, and implement 
security features to provide more comfort to the user, such as encrypted log in features and end-
to-end encryption of data, therefore providing more privacy and avoiding data leakage. We also 
may implement changes in which the TempSense mobile app itself will control the sensors and 
Raspberry Pi to record data, rather than just grabbing the data straight from Firebase. 

In conclusion, this project was a great learning experience, we had some difficulties in getting 
the team in sync as we were all in different continents due to the Covid-19 pandemic, and we 
went through some troubles learning how to use technologies we had never experienced before, 
such as Raspberry Pi, Python, and Firebase. But we also believe that it was important that we had 
made the mistakes we made as they were caused by our lack of knowledge of how the industry 
works, and thanks to that we will be more prepared for the future. 

 

  

 
 
 


